

Certificate ID: 102261

Received: 2/15/22

Client Sample ID: 7 Chill Shot 20z

Lot Number: 22025

Matrix: Water Soluble - Tinctures

Authorization:

Chris Hudalla, Chief Science Officer

Signature:

Christophen Hudalla

Date:

2/19/2022

PJLA Testing
Accreditation
80585

The data contained within this report was collected in accordance with the requirements of ISO/IEC17025:2017. I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

CN: Cannabinoid Profile & Potency [WI-10-17 & WI-10-17-01]

Analyst: SD

Test Date: 2/17/2022

The client sample was analyzed for plant-based cannabinoids by Liquid Chromatography (LC). The collected data was compared to data collected for certified reference standards at known concentrations.

102261-CN

ID	Weight %	Concentration (mg/mL)	
Δ9-ТНС	ND	ND	The second secon
THCV	ND	ND	
CBD	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
CBDV	ND	ND	
CBG	ND	ND	
CBC	ND	ND	
CBN	ND	ND	
THCA	ND	ND	
CBDA	ND	ND	
CBGA	ND	ND	
Δ8-THC	ND	ND ND	
exo-THC	ND	ND	
Total	<loq< td=""><td><loq< td=""><td>0% Cannabinoids (wt%) 0.0082%</td></loq<></td></loq<>	<loq< td=""><td>0% Cannabinoids (wt%) 0.0082%</td></loq<>	0% Cannabinoids (wt%) 0.0082%
Max THC	ND	ND	Limit of Quantitation (LOQ) = 0.0108 wt%
Max CBD	<l00< td=""><td><l00< td=""><td>Limit of Detection (LOD) = 0.0036 wt%</td></l00<></td></l00<>	<l00< td=""><td>Limit of Detection (LOD) = 0.0036 wt%</td></l00<>	Limit of Detection (LOD) = 0.0036 wt%

Max THC (and Max CBD) are calculated values for total cannabinoids after heating, assuming complete decarboxylation of the acid to the neutral form. It is calculated based on the weight loss of the acid group during decarboxylation: MAX THC = (0.877 x THCA) + THC. This calculation does not include other cannabinoid isomers (eg. D8-THC and exo-THC). ND=None detected above the limits of detection (LOD), which is one third of Limit of Quantification (LOQ). For values reported as "<LOQ", the estimated value is included in the calculated Total.

END OF REPORT

47-2654223 520 South 850 East, Suite B3 Lehi, UT 84043 801-847-7722 www.analyticalresource.com info@yourqualitylab.com

Certificate of Analysis

Client Information

PurHealth RX 14663 S. Heritage Crest Way Bluffdale, UT 84065 USA 801.903.7789 Sample Information

ARL ID: 582319

Date Received: 2/11/2022 Description: 7 Chill Shot 2oz

Lot#: 22025

Analysis	Method	[†] MDL / LOQ	Specification	Results	UOM	Lab ID
Complete Micro Profile Pseudomonas	USP, AOAC					1
Total Plate Count	USP <2021>	10	Record Only	None Detected	cfu's/g	1
Coliforms	AOAC 991.14	10	Record Only	None Detected	cfu's/g	1
E. coli	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Staphylococcus aureus	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Salmonella	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Pseudomonas aeruginosa	USP <62>	Absent	Record Only	Absent	cfu's/g	1
Yeast	USP <2021>	10	Record Only	None Detected	cfu's/g	1
Mold	USP <2021>	10	Record Only	None Detected	cfu's/g	1

Form# arlcoa031201a

Printed on: Feb 16, 2022

6:50 PM

experience · professionalism · value

Released by:

Kara Woodbury

Feb 16, 2022 Page 1

[†]Method Detection Limit (MDL): In microbiological testing, this is the minimum level of growth that can be detected with confidence. If a result is reported as "None detected", it means any visible growth was below this limit. Limit of Quantitation (LOQ): In analytical chemistry testing, this is the minimum level of the desired analyte that can be quantified with confidence. If a result is reported as less than LOQ, it means any detected amount was too small to report an exact number.

^{*} Under accreditation number 77504, ARL is an ISO/IEC 17025:2017 Accredited Laboratory. Uncertainty data for ISO-scoped methods is available upon request. Certificate and scope are also available upon request.

HM: Heavy Metal Analysis [WI-10-13]

Analyst: JFD

Test Date: 3 29 2018

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

25691-HM								
Symbol	Metal	Conc.1	Units	MDL	All	Ingestion	Units	Status
As	Arsenic	ND	μg/kg	4	200	1500	μg/kg	PASS
Cd	Cadmium	3	μg/kg	1	200	500	μg/kg	PASS
Hg	Mercury	3	μg/kg	2	100	1500	µg/kg	PASS
Pb	Lead	37	μg/kg	2	500	1000	μg/kg	PASS

¹⁾ ND - None detected to Lowest Limits of Detection (LLD)

MB1: Microbiological Contaminants [WI-10-09]

Analyst: Alyson

Test Date: 3 29 2018.

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

25691-MB1

Symbol	Analysis	Results	Units	Limits*	Status	
AC	Total Aerobic Bacterial Count	<100	CFU/g	10,000 CFU/g	PASS	
CC	Total Coliform Bacterial Count	<100	CFU/g	100 CFU/g	PASS	
EB	Total Bile Tolerant Gram Negative Count	<100	CFU/g	100 CFU/g	PASS	
YM	Total Yeast & Mold	<100	CFU/g	1,000 CFU/g	PASS	

Note: All recorded Microbiological tests are within the established limits.

MB2: Pathogenic Bacterial Contaminants [WI-10-10]

Analysi: man

Test Date: 3 29 2018

This test method was performed in accordance with the requirements of ISO/IEC 17025. These results relate only to the test article listed in this report. Reports may not be reproduced except in their entirety.

25691-MB2

	Test ID	Analysis	Results	Units	Limits*	Status
2	25691-ECPT	E. coli (0157)	Negative	NA	Non Detected	PASS
	25691-SPT	Salmonella	Negative	NA	Non Detected	PASS

Note: All recorded pathogenic bacteria tests passed.

²⁾ MA Dept. of Public Health: Protocol for MMJ and MIPS, Exhibit 4(a) for all products.

³⁾USP exposure limits based on daily oral dosing of 1g of concentrate for a 110 lb person.

PST: Pesticide Analysis [WI-10-11]

Analyst: KSB

Test Date: 3 29 2018

The client sample was anlayzed for pesticides using Liquid Chromatography with Mass Spectrometric detection (LC/MS/MS). The method used for sample prep was based on the European method for pesticide analysis (EN 15662).

25691-PST

Analyte	CAS	Result	Units	LLD	Limits (ppb)	Status
Abamectin	71751-41-2	ND	ppb	0.2	10	PASS
Azoxystrobin	131860-33-8	ND	ppb	0.1	10	PASS
Bifenazate	149877-41-8	ND	ppb	0.1	10	PASS
Bifenthrin	82657-04-3	ND	ppb	0.2	10	PASS
Cyfluthrin	68359-37-5	ND	ppb	0.5	10	
Daminozide	1596-84-5	ND	ppb	10	10	PASS
Dichlorvos	62-73-7	ND	ppb	3	10	
Etoxazole	153233-91-1	ND	ppb	0.1	10	PASS
Fenoxycarb	72490-01-8	ND	ppb	0.1	10	PASS
lmazalil	35554-44-0	ND	ppb	0.1	10	PASS
I midacloprid	138261-41-3	ND	ppb	0.1	10	PASS
Myclobutanil	88671-89-0	ND	ppb	0.1	10	PASS
Paclobutrazol	76738-62-0	ND	ppb	0.1	10	PASS
Piperonyl butoxide	51-03-6	ND	ppb	0.1	10	PASS
Pyrethrin	8003-34-7	ND	ppb	0.1	10	PASS
Spinosad	168316-95-8	ND	ppb	0.1	10	PASS
Spiromesifen	283594-90-1	ND	ppb	0.1	10	PASS
Spirotetramat	203313-25-1	ND	ppb	0.1	10	PASS
Trifloxystrobin	141517-21-7	ND	ppb	0.1	10	PASS

Testing limits established by the Massachusetts Department of Public Health, Protocol for Sampling and Analysis of Finished Medical Marijuana Products and Marijuana-Infused Products for Massachusetts Registered Medical Marijuana Dispensaries, Exhibit 5. ND indicates "none detected" above the lower limit of detection (LLD). Analytes marked with (*) indicate analytes for which no recovery was observed for a pre-spiked matrix sample.

VC: Analysis of Volatile Oranic Compounds [WI-10-07]

Analysi: CJH

Test Date: 3 29 2018

The client sample was analyzed by Head-Space Gas Chromatography (HS-GC). The collected data was compared to data collected for certified reference standards at known concentrations.

25691-VC

Compound	CAS	Amount 1	Limit ²	Status
Propane	74-98-6	ND	N/A	
Butane	106-97-8	ND	5,000 ppm	PASS
Methanol	67-56-1	ND	3,000 ppm	PASS
Ethanol	64-17-5	ND	5,000 ppm	PASS
2,2-dimethylbutane		ND	N/A	
Acetone	67-64-1	ND	5,000 ppm	PASS
Isopropanol	67-63-0	ND	5,000 ppm	PASS
2,3-dimethylbutane	79-29-8	ND	N/A	
3-methylpentane	96-14-0	ND	N/A	
Hexane	110-54-3	ND	290 ppm	PASS
l-propanol	71-23-8	ND	5,000 ppm	PASS
Toluene	108-88-3	ND	890 ppm	PASS

¹⁾ ND = None detected above 5 ppm.

END OF REPORT

²⁾ In ppm, based on USP recommended limits for residual solvents, adopted by the Massachusetts Department of Public Health on 3/31/16. Butane/Propane limits are based on limits established for state of Colorado.